106 – Artificial Intelligence Tools and Techniques
Dmytro Peleshko; Olena Vynokurova.
Annotation

Introduction. AWS (AWS management console and how to use it; using AWS SIMPLE STORAGE SERVICE (S3); automating work with AWS resources using PYTHON; elements of ML in AWS SAGEMAKER; AWS Lambda). Scikit and Unsupervised Learning (metrics; clustering; anomaly detection; dimensionality reduction; tracking neural models; tensor board; weights and Biases; neptune). Model optimization (Auto ml; hyper opt; ray tune). Model deploying (docker; TorchServe deployment; fastAPI deployment).

Objectives

Abstract thinking, analysis and synthesis. Ability to apply knowledge in practical situations. Ability to search, process and analyse information from various sources. Ability to make a reasoned decision.

Keywords
Machine learning, clustering, neural network, hyperparameter, TensorBoard, Tensorflow, Model-optimization techniques, quantization, containerization.
Date of Creation
8.11.2024
Duration
6-8 hours
Language
English
License
ISBN
Literature
  1. Andreas C. Müller, Sarah Guido. Introduction to Machine Learning with Python. A Guide for Data Scientists.O’Reilly Media. 2016. 392 p.
  1. Andreas Wittig, Michael Wittig. Amazon Web Services in Action. An in-depth guide to AWS- Manning Publications Co.  2023. 554 p.
  1. Dr. Saket, S.R. Mengle, Maximo Gurmendez. Mastering Machine Learning on AWS. Advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow. Packt Publishing 2019. 293 p.
  1. Raúl Garreta, Guillermo Moncecchi. Learning scikit-learn: Machine Learning in Python. Packt Publishing.  2013. 118 p.
  1. Suman Kalyan Adari, Sridhar Alla. Beginning Anomaly Detection Using Python-Based Deep Learning. Implement Anomaly Detection Applications with Keras and PyTorch. Apress. 2024. 538 p.
  1. Tarek Amr. Hands On Machine Learning with scikit-learn and Scientific Python Toolkits. A practical guide to implementing supervised and unsupervised machine learning algorithms in Python. Packt Publishing. 2020. 368 p.